Le particelle senza massa

Immagina una particella. Cosa ti viene in mente? Se non sei un fisico teorico delle particelle, è probabile che tu stia immaginando una pallina che galleggia nello spazio.
Ma non è del tutto corretto. Un modo per dimostrarlo: prova a immaginare quella pallina come una particella senza massa.

A volte la parola “massa” è usata in modo intercambiabile con la parola “peso“. Non è del tutto sbagliato. La massa di un oggetto viene misurata dalla sua resistenza a una forza. Quando raccogli qualcosa per testare il suo peso, sta resistendo alla gravità terrestre, quindi il peso di un oggetto sulla Terra è davvero una misura della sua massa.

Ma c’è di più nella massa oltre alla resistenza alla gravità, specialmente su scale equivalenti alle parti più piccole della materia. Quindi la definizione di massa dei fisici diventa un po’ più complicata.

La maggior parte delle particelle di materia fondamentale, come elettroni, muoni e quark, derivano la loro massa dalla loro resistenza a un campo che permea l’universo chiamato campo di Higgs. Più il campo di Higgs attira una particella, più questa ha massa. Quando si tratta di particelle composite come protoni e neutroni, che sono costituiti da quark, la maggior parte della loro massa proviene dall’attrazione della forza forte che tiene insieme i quark.

Fotoni e gluoni, due particelle che trasportano forza, sono fondamentali, quindi non ospitano il conflitto interno di una particella composita. Non sono interessati dal campo di Higgs. In effetti, sembrano essere senza massa.

Le particelle senza massa sono puramente energia. “È sufficiente che una particella abbia energia per avere un senso significativo nell’esistenza“, afferma Flip Tanedo, assistente professore di fisica presso l’Università della California, a Riverside.

Questi quanti di energia non hanno bordi e non hanno superfici, dice Tien-Tien Yu, un assistente professore di fisica all’Università dell’Oregon.
Un modo migliore di pensare alle particelle è come increspature su un campo quantico, afferma Natalia Toro, teorica del laboratorio nazionale degli acceleratori SLAC del Dipartimento dell’Energia degli Stati Uniti e professore associato presso il dipartimento di fisica delle particelle della Stanford University. Un campo quantico ha modalità di vibrazione come le armoniche su una corda di chitarra. Colpiscilo con la giusta frequenza e otterrai una particella.
Le due particelle che i fisici sanno essere (almeno approssimativamente) prive di massa – fotoni e gluoni – sono entrambe particelle che trasportano forza, note anche come bosoni di gauge. I fotoni sono associati alla forza elettromagnetica e i gluoni sono associati alla forza forte (anche il gravitone, un bosone di gauge ancora teorico associato alla gravità, dovrebbe essere privo di massa, ma la sua esistenza non è stata ancora confermata).
Queste particelle prive di massa hanno alcune proprietà uniche. Sono completamente stabili, quindi a differenza di alcune particelle, non perdono la loro energia decadendo in coppie di particelle meno massicce.
Poiché tutta la loro energia è cinetica, viaggiano sempre alla velocità della luce. E grazie alla relatività speciale, “le cose che viaggiano alla velocità della luce in realtà non invecchiano“, dice Tanedo. “Quindi un fotone in realtà non sta invecchiando rispetto a noi. È senza tempo, in questo senso”.
Per tornare al tema della gravità: la gravità influenza qualsiasi cosa sia dotata di energia, persino una particella che non ha alcuna massa. Ecco perché l’attrazione gravitazionale di oggetti come le galassie e gli ammassi di materia oscura curvano il percorso della luce che li attraversa nello spazio.
Potrebbe essere che il fotone e il gluone non siano le uniche particelle prive di massa nell’universo. Gli scienziati potrebbero un giorno (probabilmente in un lontano futuro) trovare il suddetto gravitone. Oppure si potrebbe scoprire che il più leggero dei tre tipi di neutrini ha massa zero.
Ci potrebbero essere un sacco di cose [senza massa] ma, o non c’è modo di cercarle, o piuttosto non abbiamo capito come cercarle“, dice Yu. “Potrebbe essere che ci sia tutto un altro mondo che ancora non conosciamo“.

Più letti nella settimana

Perché l’Homo sapiens è sopravvissuto a tutte le altre specie umane?

Gli Homo sapiens sono gli unici rappresentanti sopravvissuti dell'albero...

Siamo davvero andati sulla Luna? Il complotto lunare

Sono trascorsi oltre 50 anni dal giorno in cui la missione Apollo 11 sbarcò sulla Luna. Sono stati realizzati film, documentari, scritti libri ed esaminate le rocce

Ossigeno oscuro: straordinario ritrovamento a 4000 metri

La recente scoperta di un “ossigeno oscuro” prodotto da...

Rinvenuta grotta lunare che potrebbe ospitare gli astronauti – video

Mentre la NASA e altre agenzie spaziali pianificano una...

New Horizons: lo spazio profondo è davvero completamente buio

Quattro anni fa, gli astronomi hanno avuto una spettacolare...

In Tendenza

Siamo davvero andati sulla Luna? Il complotto lunare

Sono trascorsi oltre 50 anni dal giorno in cui la missione Apollo 11 sbarcò sulla Luna. Sono stati realizzati film, documentari, scritti libri ed esaminate le rocce

Complotto della Terra piatta: ecco perché non ha fondamento

La convinzione che la Terra sia piatta non è...

Paradosso di Fermi: la realtà non è quella che ci appare

Tra i tentativi più fantasiosi di rispondere al paradosso di Fermi l'ipotesi del planetario vorrebbe che tutti noi fossimo immersi in una simulazione perfetta di una realtà virtuale.

Progetto ITER: svolta nell’energia da fusione

Il progetto di energia da fusione ITER ha segnato...

Blazar S5 1803+78: scoperta affascinante variabilità ottica

I blazar sono tra gli oggetti più enigmatici e...

Articoli correlati

Popular Categories